\(\int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx\) [671]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 166 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\frac {1}{8} \left (24 c^3+12 b c^2 d+36 c d^2+3 b d^3\right ) x-\frac {\left (12 d \left (4 c^2+d^2\right )+3 b \left (c^3+4 c d^2\right )\right ) \cos (e+f x)}{6 f}-\frac {d \left (6 b c^2+60 c d+9 b d^2\right ) \cos (e+f x) \sin (e+f x)}{24 f}-\frac {(3 b c+12 d) \cos (e+f x) (c+d \sin (e+f x))^2}{12 f}-\frac {b \cos (e+f x) (c+d \sin (e+f x))^3}{4 f} \]

[Out]

1/8*(8*a*c^3+12*a*c*d^2+12*b*c^2*d+3*b*d^3)*x-1/6*(4*a*d*(4*c^2+d^2)+3*b*(c^3+4*c*d^2))*cos(f*x+e)/f-1/24*d*(2
0*a*c*d+6*b*c^2+9*b*d^2)*cos(f*x+e)*sin(f*x+e)/f-1/12*(4*a*d+3*b*c)*cos(f*x+e)*(c+d*sin(f*x+e))^2/f-1/4*b*cos(
f*x+e)*(c+d*sin(f*x+e))^3/f

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2832, 2813} \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=-\frac {d \left (20 a c d+6 b c^2+9 b d^2\right ) \sin (e+f x) \cos (e+f x)}{24 f}-\frac {\left (4 a d \left (4 c^2+d^2\right )+3 b \left (c^3+4 c d^2\right )\right ) \cos (e+f x)}{6 f}+\frac {1}{8} x \left (8 a c^3+12 a c d^2+12 b c^2 d+3 b d^3\right )-\frac {(4 a d+3 b c) \cos (e+f x) (c+d \sin (e+f x))^2}{12 f}-\frac {b \cos (e+f x) (c+d \sin (e+f x))^3}{4 f} \]

[In]

Int[(a + b*Sin[e + f*x])*(c + d*Sin[e + f*x])^3,x]

[Out]

((8*a*c^3 + 12*b*c^2*d + 12*a*c*d^2 + 3*b*d^3)*x)/8 - ((4*a*d*(4*c^2 + d^2) + 3*b*(c^3 + 4*c*d^2))*Cos[e + f*x
])/(6*f) - (d*(6*b*c^2 + 20*a*c*d + 9*b*d^2)*Cos[e + f*x]*Sin[e + f*x])/(24*f) - ((3*b*c + 4*a*d)*Cos[e + f*x]
*(c + d*Sin[e + f*x])^2)/(12*f) - (b*Cos[e + f*x]*(c + d*Sin[e + f*x])^3)/(4*f)

Rule 2813

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*a*c +
 b*d)*(x/2), x] + (-Simp[(b*c + a*d)*(Cos[e + f*x]/f), x] - Simp[b*d*Cos[e + f*x]*(Sin[e + f*x]/(2*f)), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = -\frac {b \cos (e+f x) (c+d \sin (e+f x))^3}{4 f}+\frac {1}{4} \int (c+d \sin (e+f x))^2 (4 a c+3 b d+(3 b c+4 a d) \sin (e+f x)) \, dx \\ & = -\frac {(3 b c+4 a d) \cos (e+f x) (c+d \sin (e+f x))^2}{12 f}-\frac {b \cos (e+f x) (c+d \sin (e+f x))^3}{4 f}+\frac {1}{12} \int (c+d \sin (e+f x)) \left (12 a c^2+15 b c d+8 a d^2+\left (6 b c^2+20 a c d+9 b d^2\right ) \sin (e+f x)\right ) \, dx \\ & = \frac {1}{8} \left (8 a c^3+12 b c^2 d+12 a c d^2+3 b d^3\right ) x-\frac {\left (4 a d \left (4 c^2+d^2\right )+3 b \left (c^3+4 c d^2\right )\right ) \cos (e+f x)}{6 f}-\frac {d \left (6 b c^2+20 a c d+9 b d^2\right ) \cos (e+f x) \sin (e+f x)}{24 f}-\frac {(3 b c+4 a d) \cos (e+f x) (c+d \sin (e+f x))^2}{12 f}-\frac {b \cos (e+f x) (c+d \sin (e+f x))^3}{4 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.53 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.78 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\frac {12 \left (8 c^3+4 b c^2 d+12 c d^2+b d^3\right ) (e+f x)-8 \left (4 b c^3+36 c^2 d+9 b c d^2+9 d^3\right ) \cos (e+f x)+8 d^2 (b c+d) \cos (3 (e+f x))-8 d \left (9 c d+b \left (3 c^2+d^2\right )\right ) \sin (2 (e+f x))+b d^3 \sin (4 (e+f x))}{32 f} \]

[In]

Integrate[(3 + b*Sin[e + f*x])*(c + d*Sin[e + f*x])^3,x]

[Out]

(12*(8*c^3 + 4*b*c^2*d + 12*c*d^2 + b*d^3)*(e + f*x) - 8*(4*b*c^3 + 36*c^2*d + 9*b*c*d^2 + 9*d^3)*Cos[e + f*x]
 + 8*d^2*(b*c + d)*Cos[3*(e + f*x)] - 8*d*(9*c*d + b*(3*c^2 + d^2))*Sin[2*(e + f*x)] + b*d^3*Sin[4*(e + f*x)])
/(32*f)

Maple [A] (verified)

Time = 2.67 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.89

method result size
parts \(a \,c^{3} x -\frac {\left (a \,d^{3}+3 c \,d^{2} b \right ) \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )}{3 f}+\frac {\left (3 a c \,d^{2}+3 b \,c^{2} d \right ) \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )}{f}-\frac {\left (3 a \,c^{2} d +c^{3} b \right ) \cos \left (f x +e \right )}{f}+\frac {b \,d^{3} \left (-\frac {\left (\sin ^{3}\left (f x +e \right )+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )}{f}\) \(148\)
parallelrisch \(\frac {\left (-72 a c \,d^{2}-72 b \,c^{2} d -24 b \,d^{3}\right ) \sin \left (2 f x +2 e \right )+\left (8 a \,d^{3}+24 c \,d^{2} b \right ) \cos \left (3 f x +3 e \right )+3 b \,d^{3} \sin \left (4 f x +4 e \right )+\left (-288 a \,c^{2} d -72 a \,d^{3}-96 c^{3} b -216 c \,d^{2} b \right ) \cos \left (f x +e \right )+\left (36 b x f -64 a \right ) d^{3}+144 c \left (a f x -\frac {4 b}{3}\right ) d^{2}-288 \left (-\frac {b x f}{2}+a \right ) c^{2} d +96 c^{3} \left (a f x -b \right )}{96 f}\) \(164\)
derivativedivides \(\frac {a \,c^{3} \left (f x +e \right )-3 a \,c^{2} d \cos \left (f x +e \right )+3 a c \,d^{2} \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )-\frac {a \,d^{3} \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )}{3}-c^{3} b \cos \left (f x +e \right )+3 b \,c^{2} d \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )-c \,d^{2} b \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )+b \,d^{3} \left (-\frac {\left (\sin ^{3}\left (f x +e \right )+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )}{f}\) \(182\)
default \(\frac {a \,c^{3} \left (f x +e \right )-3 a \,c^{2} d \cos \left (f x +e \right )+3 a c \,d^{2} \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )-\frac {a \,d^{3} \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )}{3}-c^{3} b \cos \left (f x +e \right )+3 b \,c^{2} d \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )-c \,d^{2} b \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )+b \,d^{3} \left (-\frac {\left (\sin ^{3}\left (f x +e \right )+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )}{f}\) \(182\)
risch \(a \,c^{3} x +\frac {3 x a c \,d^{2}}{2}+\frac {3 c^{2} d x b}{2}+\frac {3 b \,d^{3} x}{8}-\frac {3 \cos \left (f x +e \right ) a \,c^{2} d}{f}-\frac {3 \cos \left (f x +e \right ) a \,d^{3}}{4 f}-\frac {\cos \left (f x +e \right ) c^{3} b}{f}-\frac {9 \cos \left (f x +e \right ) c \,d^{2} b}{4 f}+\frac {b \,d^{3} \sin \left (4 f x +4 e \right )}{32 f}+\frac {d^{3} \cos \left (3 f x +3 e \right ) a}{12 f}+\frac {d^{2} \cos \left (3 f x +3 e \right ) c b}{4 f}-\frac {3 \sin \left (2 f x +2 e \right ) a c \,d^{2}}{4 f}-\frac {3 \sin \left (2 f x +2 e \right ) b \,c^{2} d}{4 f}-\frac {\sin \left (2 f x +2 e \right ) b \,d^{3}}{4 f}\) \(204\)
norman \(\frac {\left (a \,c^{3}+\frac {3}{2} a c \,d^{2}+\frac {3}{2} b \,c^{2} d +\frac {3}{8} b \,d^{3}\right ) x +\left (a \,c^{3}+\frac {3}{2} a c \,d^{2}+\frac {3}{2} b \,c^{2} d +\frac {3}{8} b \,d^{3}\right ) x \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\left (4 a \,c^{3}+6 a c \,d^{2}+6 b \,c^{2} d +\frac {3}{2} b \,d^{3}\right ) x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\left (4 a \,c^{3}+6 a c \,d^{2}+6 b \,c^{2} d +\frac {3}{2} b \,d^{3}\right ) x \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\left (6 a \,c^{3}+9 a c \,d^{2}+9 b \,c^{2} d +\frac {9}{4} b \,d^{3}\right ) x \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {18 a \,c^{2} d +4 a \,d^{3}+6 c^{3} b +12 c \,d^{2} b}{3 f}-\frac {2 \left (3 a \,c^{2} d +c^{3} b \right ) \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}-\frac {2 \left (9 a \,c^{2} d +2 a \,d^{3}+3 c^{3} b +6 c \,d^{2} b \right ) \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}-\frac {2 \left (27 a \,c^{2} d +8 a \,d^{3}+9 c^{3} b +24 c \,d^{2} b \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f}-\frac {3 d \left (4 a c d +4 c^{2} b +b \,d^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{4 f}+\frac {3 d \left (4 a c d +4 c^{2} b +b \,d^{2}\right ) \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4 f}-\frac {d \left (12 a c d +12 c^{2} b +11 b \,d^{2}\right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4 f}+\frac {d \left (12 a c d +12 c^{2} b +11 b \,d^{2}\right ) \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4 f}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{4}}\) \(488\)

[In]

int((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

a*c^3*x-1/3*(a*d^3+3*b*c*d^2)/f*(2+sin(f*x+e)^2)*cos(f*x+e)+(3*a*c*d^2+3*b*c^2*d)/f*(-1/2*sin(f*x+e)*cos(f*x+e
)+1/2*f*x+1/2*e)-(3*a*c^2*d+b*c^3)/f*cos(f*x+e)+b*d^3/f*(-1/4*(sin(f*x+e)^3+3/2*sin(f*x+e))*cos(f*x+e)+3/8*f*x
+3/8*e)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.87 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\frac {8 \, {\left (3 \, b c d^{2} + a d^{3}\right )} \cos \left (f x + e\right )^{3} + 3 \, {\left (8 \, a c^{3} + 12 \, b c^{2} d + 12 \, a c d^{2} + 3 \, b d^{3}\right )} f x - 24 \, {\left (b c^{3} + 3 \, a c^{2} d + 3 \, b c d^{2} + a d^{3}\right )} \cos \left (f x + e\right ) + 3 \, {\left (2 \, b d^{3} \cos \left (f x + e\right )^{3} - {\left (12 \, b c^{2} d + 12 \, a c d^{2} + 5 \, b d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{24 \, f} \]

[In]

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

1/24*(8*(3*b*c*d^2 + a*d^3)*cos(f*x + e)^3 + 3*(8*a*c^3 + 12*b*c^2*d + 12*a*c*d^2 + 3*b*d^3)*f*x - 24*(b*c^3 +
 3*a*c^2*d + 3*b*c*d^2 + a*d^3)*cos(f*x + e) + 3*(2*b*d^3*cos(f*x + e)^3 - (12*b*c^2*d + 12*a*c*d^2 + 5*b*d^3)
*cos(f*x + e))*sin(f*x + e))/f

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 386 vs. \(2 (165) = 330\).

Time = 0.20 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.33 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\begin {cases} a c^{3} x - \frac {3 a c^{2} d \cos {\left (e + f x \right )}}{f} + \frac {3 a c d^{2} x \sin ^{2}{\left (e + f x \right )}}{2} + \frac {3 a c d^{2} x \cos ^{2}{\left (e + f x \right )}}{2} - \frac {3 a c d^{2} \sin {\left (e + f x \right )} \cos {\left (e + f x \right )}}{2 f} - \frac {a d^{3} \sin ^{2}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{f} - \frac {2 a d^{3} \cos ^{3}{\left (e + f x \right )}}{3 f} - \frac {b c^{3} \cos {\left (e + f x \right )}}{f} + \frac {3 b c^{2} d x \sin ^{2}{\left (e + f x \right )}}{2} + \frac {3 b c^{2} d x \cos ^{2}{\left (e + f x \right )}}{2} - \frac {3 b c^{2} d \sin {\left (e + f x \right )} \cos {\left (e + f x \right )}}{2 f} - \frac {3 b c d^{2} \sin ^{2}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{f} - \frac {2 b c d^{2} \cos ^{3}{\left (e + f x \right )}}{f} + \frac {3 b d^{3} x \sin ^{4}{\left (e + f x \right )}}{8} + \frac {3 b d^{3} x \sin ^{2}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{4} + \frac {3 b d^{3} x \cos ^{4}{\left (e + f x \right )}}{8} - \frac {5 b d^{3} \sin ^{3}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{8 f} - \frac {3 b d^{3} \sin {\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{8 f} & \text {for}\: f \neq 0 \\x \left (a + b \sin {\left (e \right )}\right ) \left (c + d \sin {\left (e \right )}\right )^{3} & \text {otherwise} \end {cases} \]

[In]

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))**3,x)

[Out]

Piecewise((a*c**3*x - 3*a*c**2*d*cos(e + f*x)/f + 3*a*c*d**2*x*sin(e + f*x)**2/2 + 3*a*c*d**2*x*cos(e + f*x)**
2/2 - 3*a*c*d**2*sin(e + f*x)*cos(e + f*x)/(2*f) - a*d**3*sin(e + f*x)**2*cos(e + f*x)/f - 2*a*d**3*cos(e + f*
x)**3/(3*f) - b*c**3*cos(e + f*x)/f + 3*b*c**2*d*x*sin(e + f*x)**2/2 + 3*b*c**2*d*x*cos(e + f*x)**2/2 - 3*b*c*
*2*d*sin(e + f*x)*cos(e + f*x)/(2*f) - 3*b*c*d**2*sin(e + f*x)**2*cos(e + f*x)/f - 2*b*c*d**2*cos(e + f*x)**3/
f + 3*b*d**3*x*sin(e + f*x)**4/8 + 3*b*d**3*x*sin(e + f*x)**2*cos(e + f*x)**2/4 + 3*b*d**3*x*cos(e + f*x)**4/8
 - 5*b*d**3*sin(e + f*x)**3*cos(e + f*x)/(8*f) - 3*b*d**3*sin(e + f*x)*cos(e + f*x)**3/(8*f), Ne(f, 0)), (x*(a
 + b*sin(e))*(c + d*sin(e))**3, True))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.05 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\frac {96 \, {\left (f x + e\right )} a c^{3} + 72 \, {\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} b c^{2} d + 72 \, {\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} a c d^{2} + 96 \, {\left (\cos \left (f x + e\right )^{3} - 3 \, \cos \left (f x + e\right )\right )} b c d^{2} + 32 \, {\left (\cos \left (f x + e\right )^{3} - 3 \, \cos \left (f x + e\right )\right )} a d^{3} + 3 \, {\left (12 \, f x + 12 \, e + \sin \left (4 \, f x + 4 \, e\right ) - 8 \, \sin \left (2 \, f x + 2 \, e\right )\right )} b d^{3} - 96 \, b c^{3} \cos \left (f x + e\right ) - 288 \, a c^{2} d \cos \left (f x + e\right )}{96 \, f} \]

[In]

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

1/96*(96*(f*x + e)*a*c^3 + 72*(2*f*x + 2*e - sin(2*f*x + 2*e))*b*c^2*d + 72*(2*f*x + 2*e - sin(2*f*x + 2*e))*a
*c*d^2 + 96*(cos(f*x + e)^3 - 3*cos(f*x + e))*b*c*d^2 + 32*(cos(f*x + e)^3 - 3*cos(f*x + e))*a*d^3 + 3*(12*f*x
 + 12*e + sin(4*f*x + 4*e) - 8*sin(2*f*x + 2*e))*b*d^3 - 96*b*c^3*cos(f*x + e) - 288*a*c^2*d*cos(f*x + e))/f

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.89 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\frac {b d^{3} \sin \left (4 \, f x + 4 \, e\right )}{32 \, f} + \frac {1}{8} \, {\left (8 \, a c^{3} + 12 \, b c^{2} d + 12 \, a c d^{2} + 3 \, b d^{3}\right )} x + \frac {{\left (3 \, b c d^{2} + a d^{3}\right )} \cos \left (3 \, f x + 3 \, e\right )}{12 \, f} - \frac {{\left (4 \, b c^{3} + 12 \, a c^{2} d + 9 \, b c d^{2} + 3 \, a d^{3}\right )} \cos \left (f x + e\right )}{4 \, f} - \frac {{\left (3 \, b c^{2} d + 3 \, a c d^{2} + b d^{3}\right )} \sin \left (2 \, f x + 2 \, e\right )}{4 \, f} \]

[In]

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^3,x, algorithm="giac")

[Out]

1/32*b*d^3*sin(4*f*x + 4*e)/f + 1/8*(8*a*c^3 + 12*b*c^2*d + 12*a*c*d^2 + 3*b*d^3)*x + 1/12*(3*b*c*d^2 + a*d^3)
*cos(3*f*x + 3*e)/f - 1/4*(4*b*c^3 + 12*a*c^2*d + 9*b*c*d^2 + 3*a*d^3)*cos(f*x + e)/f - 1/4*(3*b*c^2*d + 3*a*c
*d^2 + b*d^3)*sin(2*f*x + 2*e)/f

Mupad [B] (verification not implemented)

Time = 8.30 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.10 \[ \int (3+b \sin (e+f x)) (c+d \sin (e+f x))^3 \, dx=\frac {2\,a\,d^3\,\cos \left (3\,e+3\,f\,x\right )-6\,b\,d^3\,\sin \left (2\,e+2\,f\,x\right )+\frac {3\,b\,d^3\,\sin \left (4\,e+4\,f\,x\right )}{4}-18\,a\,d^3\,\cos \left (e+f\,x\right )-24\,b\,c^3\,\cos \left (e+f\,x\right )-72\,a\,c^2\,d\,\cos \left (e+f\,x\right )-54\,b\,c\,d^2\,\cos \left (e+f\,x\right )+24\,a\,c^3\,f\,x+9\,b\,d^3\,f\,x+6\,b\,c\,d^2\,\cos \left (3\,e+3\,f\,x\right )-18\,a\,c\,d^2\,\sin \left (2\,e+2\,f\,x\right )-18\,b\,c^2\,d\,\sin \left (2\,e+2\,f\,x\right )+36\,a\,c\,d^2\,f\,x+36\,b\,c^2\,d\,f\,x}{24\,f} \]

[In]

int((a + b*sin(e + f*x))*(c + d*sin(e + f*x))^3,x)

[Out]

(2*a*d^3*cos(3*e + 3*f*x) - 6*b*d^3*sin(2*e + 2*f*x) + (3*b*d^3*sin(4*e + 4*f*x))/4 - 18*a*d^3*cos(e + f*x) -
24*b*c^3*cos(e + f*x) - 72*a*c^2*d*cos(e + f*x) - 54*b*c*d^2*cos(e + f*x) + 24*a*c^3*f*x + 9*b*d^3*f*x + 6*b*c
*d^2*cos(3*e + 3*f*x) - 18*a*c*d^2*sin(2*e + 2*f*x) - 18*b*c^2*d*sin(2*e + 2*f*x) + 36*a*c*d^2*f*x + 36*b*c^2*
d*f*x)/(24*f)